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• Système expert / Apprentissage automatique

• Prédiction de la résistance bactérienne

• Des défis pratiques

• Et des questions éthiques



Système expert

Entretiens avec 
des médecins

- Si pyélonéphrite
- et femme enceinte
- à céphalosporine
- et femme non enceinte
- à fluoroquinolone
- et allergie aux pénicillines
- à fluoroquinolone
- …

- Si pneumonie
- et peu sévère
- à amoxicilline
- sévère
- …à C3G + Rovamycine

Traduction
en règles

Programmation 
manuelle des règles



Quelle est l'infection ? Pyélonéphrite Cystite Pneumonie

Est-ce une femme ? Oui Non

Est-elle enceinte ? Oui Non

ü Envoyez un ECBU
ü Cefotaxime IV 1 g x 3/jour

ü Réévaluer avec les résultats de l'ECBU

Est-elle allergique 
aux pénicillines ? Oui Non

….



2012 2018
N requêtes total 369 317 3 549 488
N requêtes / jour 796 [578 – 989] 11 125 [5592 – 12 505]
Adresses I.P. uniques / jour 414 [245 – 394] 5365    [2891 – 5769]

2012

2018

Delory et al. A computerized decision support system (CDSS) for antibiotic prescription in primary care-Antibioclic: implementation, 
adoption and sustainable use in the era of extended antimicrobial resistance. Journal of Antimicrobial Chemotherapy 2020
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In total, 75 papers with 60 unique ML-CDSS addressing clinical
ID decisions were included. Thirty-one articles were found in
MEDLINE/PubMed,12 in free repository of electronic preprints such
as arXiv (n ¼ 8) or bioRxiv (n ¼ 4), ten in Google Scholar and ten in
IEEE Xplore Digital Library. Themain characteristics of theML-CDSS
are summarized in Table 2 and detailed in the Supplementary
material.

Overall, 37 (62%) ML-CDSS focused on bacterial infections, 10
(17%) on viral infections, nine (15%) on tuberculosis and four (7%) on
any kind of infection. Among them, 20 (33%) addressed the diag-
nosis of infection, 18 (30%) the prediction, early detection or
stratification of sepsis, 13 (22%) the prediction of treatment
response, four (7%) the prediction of antibiotic resistance, three
(5%) the choice of antibiotic regimen and two (3%) the choice of a
combination antiretroviral therapy (cART). Most of the ML-CDSS
were developed with data from adult patients (n ¼ 54, 90%) but
some targeted paediatric patients (n ¼ 3, 5%) [27e29] or neonates
(n ¼ 3, 5%) [30e32].

The vast majority of ML-CDSS (n ¼ 58, 97%) used supervised
learning whereas two (3%) used reinforcement learning [33,34].

Prediction, early detection or stratification of sepsis

Eighteen ML-CDSS (30%) addressed the prediction, early detec-
tion or stratification of sepsis in the Intensive Care Unit (ICU).
Among these ML-CDSS, 16 exclusively analysed structured patient
variables: vitals (n ¼ 15), laboratory data (n ¼ 12), basic de-
mographic information (n ¼ 7), medical history limited to main
comorbidities and date of admission (n ¼ 7), therapeutic data
(n ¼ 5) and electrocardiogram waveform (n ¼ 1). Two ML-CDSS
added unstructured clinical data to their model, one specifically
looked for antibiotic prescription in nursing notes to predict sepsis
[35], but the other did not give details [36]. No CDSS for sepsis
prediction used symptoms, physical examination findings nor
microbiology data.

All the 18ML-CDSSwere developedwith data fromhigh-income
countries (HICs), with six ML-CDSS using the MIMIC (Multipa-
rameter Intelligent Monitoring in Intensive Care) dataset. This
dataset contains openly available data from ~50 000 critical care
patients admitted to a Medical Center in Boston [37].

Seventeen ML-CDSS were evaluated with measures of perfor-
mance such as sensitivity or specificity and one ML-CDSS was
evaluated in the clinical setting. This ML-CDSS was developed by a
company that published a set of papers describing its development,
performance and impact in quasi-experimental studies [38]. They
reported a relative reduction of in-hospital mortality between 30%
and 60% after implementation of their ML-CDSS in ICUs [39e41]
but do not use statistical methods adapted to quasi-experimental
designs [42]. Indeed, they directly compare in-hospital mortality
before and after the use of the ML-CDSS, a measure that is sus-
ceptible to biases such as the history bias, i.e. the possibility that the
change in the outcome may be linked to other changes in the
environment rather than to the addition of the ML-CDSS [43]. They
also published a randomized clinical trial inwhich 67 patients were
randomized to a group monitored by a machine learning algorithm
and 75 patients to a control group [44]. The trial reported a relative
reduction of 58% of mortality in the group monitored by the ma-
chine learning algorithm in which patients had blood cultures
drawn and antibiotics administered approximately 2.8 hours before
the control group.

Diagnosis of infection

Twenty ML-CDSS (33%) focused on the diagnosis of infection, to
help clinicians decide if a patient has an infection, which infection
(e.g. viral or bacterial) or an alternative non-infectious diagnosis.
More precisely, six ML-CDSS address the diagnosis of tuberculosis
(TB) in outpatient settings [45e50], five the diagnosis of bacterial
infection in hospitalized patients [27,51e54], four the diagnosis of
surgical site infection (SSI) [30,55e57], three the diagnosis of
infection in emergency department [58e60] and two the distinc-
tion between bacterial and viral meningitis [61,62]. Among the five
ML-CDSS to diagnose bacterial infection in hospitalized patients,
twoML-CDSS included any kind of infection [27,51], two focused on
the prediction of positive blood cultures [53,54] and one on MRSA
infection [52]. The ML-CDSS for patients hospitalized in surgical
wards aimed to diagnose SSIs following open abdominal surgery
[55,57] surgery for head or neck cancer [56] or following any
intervention on neonates [30].

Among the 20 ML-CDSS, 18 exclusively analysed structured
patient variables: demographics data (n ¼ 15), medical history

Fig. 2. Trends in the number of publications using selected search terms in PubMed in August 2019.
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Dataset

• Résultats de cultures positives avec antibiogrammes pour 5 antibiotiques : 
ceftazidime (n = 2942), gentamicin (n = 4360), imipenem (n = 2235), 
ofloxacin (n = 3117) and sulfamethoxazole-trimethoprim (n = 3544)

• Caractéristiques démographiques, comorbidités, autonomie, , lieu de 
résidence, hospitalisations précédentes, antibiothérapies précédentes, 
résistances précédentes, type de prélèvements

• Utilisation de régression logistique, réseaux neuronaux, GBDT et une 
technique d’ensemble qui rassemble les algorithmes



AUC de 0.73–0.79 selon les antibiotiques
Si on ajoute l’espèce bactérienne, AUC de 0.8–0.88







• Hémocultures ou ECBU + à E. coli, K. pneumonie, P. aeruginosa
• 15580 prélèvements avec un des trois micro-organismes
• Caractéristiques démographiques, microbiologie, dates admission hôpital, 

médecin traitant, antibiotiques prescrits depuis 2010, prélèvements 
positifs à ces germes avec antibiogramme

• Modèle Gradient-Boosted Decision Tree



• 15 208 E. coli isolates
• 26.3% were resistant to co-amoxiclav
• 11.8% were resistant to piperacillin/tazobactam

• 194 K. pneumoniae
• 9.3% were resistant to co-amoxiclav
• 8.8% were resistant to piperacillin/tazobactam

• 178 P. aeruginosa isolates
• 9.4% were resistant to piperacillin/tazobactam
• 12.0% were resistant to meropenem. 



En réglant l’outil pour qu’on ne fasse 
pas plus d’erreurs de « sous-
prescriptions » que les médecins

On augmenterait le nombre de 
prescriptions appropriées et on 
diminuerait l’utilisation d’antibiotiques 
à spectre trop large 



En réglant l’outil pour qu’on ne fasse 
pas plus d’utilisation d’antibiotiques à 
large spectre que les médecins

On diminuerait le nombre de 
prescriptions d’antibiotiques non 
efficaces





« Big Data »
• Tous les ECBU positifs d'un groupement d'hôpitaux pendant 10 ans
• 711,099 ECBU positifs provenant de 315,047 patients
• Données démographiques (âge, genre, grossesse, retraite, EHPAD)
• Achats antibiotiques sur les 20 dernières années
• Profils de résistance antérieurs sur les 10 ans

Outcome
• Prédire les résistances bactériennes





Modèle complet



Impact choix de l'antibiothérapie probabiliste



Choix potentiel en 
utilisant l'antibiotique 
avec proba résistance la 
plus basse dans le 
modèle

Choix effectivement fait par le médecin
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resistance, for example ciprofloxacin, which is often intentionally 
avoided in standard clinical practice precisely to hinder the spread 
of resistance. We therefore also developed a model that assigns a 

cost for each drug, thereby constraining the rate of recommenda-
tion of each drug to the rate at which it was prescribed by physicians. 
Importantly, even when constrained to merely permute among the 
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Fig. 5 | Algorithmically suggesting antibiotic prescription for empirical treatments can greatly improve upon the current standard of care. a, For each 
of the six antibiotics, we calculated the fraction (top) of resistant (red) and sensitive (green) samples, as well as the risk of resistance (bottom), for all 
samples within the 1-year test period whose complete-model machine-learning assigned probabilities of resistance Pk

m were below a set threshold Pthreshold 
(x axis; see Supplementary Fig. 2 for all antibiotics and more formal definitions). At Pthreshold!=!1 the risk of sample resistance equals the population-wide risk 
of resistance (dotted red line). Setting Pthreshold!=!0.12 would permit treatment of 75% of these infections with much reduced risk of resistance compared 
with the population-wide risk (48% reduction, down-pointing arrow). b, Differentiation between samples resistant to cefuroxime axetil and sensitive to 
nitrofurantoin (red) and vice versa (blue) by their model-assigned resistance probabilities (OR of 3.9 for red points below the diagonal and blue points 
above it; P!<!10−100, Fisher’s exact test; see Supplementary Fig. 3 for all pairs of antibiotics). c, Physician’s frequency of mismatched prescriptions across all 
SDET cases (dark bar) was slightly better than the null expectation for randomly prescribing drugs with equal probabilities (random ‘dice’, magenta dashed, 
P!<!10−10) or for randomly permuting the physicians’ prescriptions (random permutations, cyan dashed, P!=!2.5!×!10−5). These mismatch treatment rates were 
substantially reduced by the machine-learning (ML)-based recommendations (light bars), either unconstrained (magenta hatched, P!<!10−10) or constrained 
to recommend drugs at the exact same frequencies prescribed by the physicians (cyan hatched, P!<!10−10). d, Top, distribution of the drugs prescribed by the 
physicians (dark bar), by the constrained algorithm (cyan-hashed light bar, constrained to be equal to the physician’s) and by the unconstrained algorithm 
(magenta-hashed light bar). Bottom, for each of these prescription models, the frequency of mismatched treatment for each of the drugs is indicated, 
normalized by the expected mismatch frequency for random drug prescription (the average rate of resistance to the drug across the SDET population).
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Fig. 5 | Algorithmically suggesting antibiotic prescription for empirical treatments can greatly improve upon the current standard of care. a, For each 
of the six antibiotics, we calculated the fraction (top) of resistant (red) and sensitive (green) samples, as well as the risk of resistance (bottom), for all 
samples within the 1-year test period whose complete-model machine-learning assigned probabilities of resistance Pk

m were below a set threshold Pthreshold 
(x axis; see Supplementary Fig. 2 for all antibiotics and more formal definitions). At Pthreshold!=!1 the risk of sample resistance equals the population-wide risk 
of resistance (dotted red line). Setting Pthreshold!=!0.12 would permit treatment of 75% of these infections with much reduced risk of resistance compared 
with the population-wide risk (48% reduction, down-pointing arrow). b, Differentiation between samples resistant to cefuroxime axetil and sensitive to 
nitrofurantoin (red) and vice versa (blue) by their model-assigned resistance probabilities (OR of 3.9 for red points below the diagonal and blue points 
above it; P!<!10−100, Fisher’s exact test; see Supplementary Fig. 3 for all pairs of antibiotics). c, Physician’s frequency of mismatched prescriptions across all 
SDET cases (dark bar) was slightly better than the null expectation for randomly prescribing drugs with equal probabilities (random ‘dice’, magenta dashed, 
P!<!10−10) or for randomly permuting the physicians’ prescriptions (random permutations, cyan dashed, P!=!2.5!×!10−5). These mismatch treatment rates were 
substantially reduced by the machine-learning (ML)-based recommendations (light bars), either unconstrained (magenta hatched, P!<!10−10) or constrained 
to recommend drugs at the exact same frequencies prescribed by the physicians (cyan hatched, P!<!10−10). d, Top, distribution of the drugs prescribed by the 
physicians (dark bar), by the constrained algorithm (cyan-hashed light bar, constrained to be equal to the physician’s) and by the unconstrained algorithm 
(magenta-hashed light bar). Bottom, for each of these prescription models, the frequency of mismatched treatment for each of the drugs is indicated, 
normalized by the expected mismatch frequency for random drug prescription (the average rate of resistance to the drug across the SDET population).
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Fig. 5 | Algorithmically suggesting antibiotic prescription for empirical treatments can greatly improve upon the current standard of care. a, For each 
of the six antibiotics, we calculated the fraction (top) of resistant (red) and sensitive (green) samples, as well as the risk of resistance (bottom), for all 
samples within the 1-year test period whose complete-model machine-learning assigned probabilities of resistance Pk

m were below a set threshold Pthreshold 
(x axis; see Supplementary Fig. 2 for all antibiotics and more formal definitions). At Pthreshold!=!1 the risk of sample resistance equals the population-wide risk 
of resistance (dotted red line). Setting Pthreshold!=!0.12 would permit treatment of 75% of these infections with much reduced risk of resistance compared 
with the population-wide risk (48% reduction, down-pointing arrow). b, Differentiation between samples resistant to cefuroxime axetil and sensitive to 
nitrofurantoin (red) and vice versa (blue) by their model-assigned resistance probabilities (OR of 3.9 for red points below the diagonal and blue points 
above it; P!<!10−100, Fisher’s exact test; see Supplementary Fig. 3 for all pairs of antibiotics). c, Physician’s frequency of mismatched prescriptions across all 
SDET cases (dark bar) was slightly better than the null expectation for randomly prescribing drugs with equal probabilities (random ‘dice’, magenta dashed, 
P!<!10−10) or for randomly permuting the physicians’ prescriptions (random permutations, cyan dashed, P!=!2.5!×!10−5). These mismatch treatment rates were 
substantially reduced by the machine-learning (ML)-based recommendations (light bars), either unconstrained (magenta hatched, P!<!10−10) or constrained 
to recommend drugs at the exact same frequencies prescribed by the physicians (cyan hatched, P!<!10−10). d, Top, distribution of the drugs prescribed by the 
physicians (dark bar), by the constrained algorithm (cyan-hashed light bar, constrained to be equal to the physician’s) and by the unconstrained algorithm 
(magenta-hashed light bar). Bottom, for each of these prescription models, the frequency of mismatched treatment for each of the drugs is indicated, 
normalized by the expected mismatch frequency for random drug prescription (the average rate of resistance to the drug across the SDET population).
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Fig. 5 | Algorithmically suggesting antibiotic prescription for empirical treatments can greatly improve upon the current standard of care. a, For each 
of the six antibiotics, we calculated the fraction (top) of resistant (red) and sensitive (green) samples, as well as the risk of resistance (bottom), for all 
samples within the 1-year test period whose complete-model machine-learning assigned probabilities of resistance Pk

m were below a set threshold Pthreshold 
(x axis; see Supplementary Fig. 2 for all antibiotics and more formal definitions). At Pthreshold!=!1 the risk of sample resistance equals the population-wide risk 
of resistance (dotted red line). Setting Pthreshold!=!0.12 would permit treatment of 75% of these infections with much reduced risk of resistance compared 
with the population-wide risk (48% reduction, down-pointing arrow). b, Differentiation between samples resistant to cefuroxime axetil and sensitive to 
nitrofurantoin (red) and vice versa (blue) by their model-assigned resistance probabilities (OR of 3.9 for red points below the diagonal and blue points 
above it; P!<!10−100, Fisher’s exact test; see Supplementary Fig. 3 for all pairs of antibiotics). c, Physician’s frequency of mismatched prescriptions across all 
SDET cases (dark bar) was slightly better than the null expectation for randomly prescribing drugs with equal probabilities (random ‘dice’, magenta dashed, 
P!<!10−10) or for randomly permuting the physicians’ prescriptions (random permutations, cyan dashed, P!=!2.5!×!10−5). These mismatch treatment rates were 
substantially reduced by the machine-learning (ML)-based recommendations (light bars), either unconstrained (magenta hatched, P!<!10−10) or constrained 
to recommend drugs at the exact same frequencies prescribed by the physicians (cyan hatched, P!<!10−10). d, Top, distribution of the drugs prescribed by the 
physicians (dark bar), by the constrained algorithm (cyan-hashed light bar, constrained to be equal to the physician’s) and by the unconstrained algorithm 
(magenta-hashed light bar). Bottom, for each of these prescription models, the frequency of mismatched treatment for each of the drugs is indicated, 
normalized by the expected mismatch frequency for random drug prescription (the average rate of resistance to the drug across the SDET population).
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resistance, for example ciprofloxacin, which is often intentionally 
avoided in standard clinical practice precisely to hinder the spread 
of resistance. We therefore also developed a model that assigns a 

cost for each drug, thereby constraining the rate of recommenda-
tion of each drug to the rate at which it was prescribed by physicians. 
Importantly, even when constrained to merely permute among the 
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Fig. 5 | Algorithmically suggesting antibiotic prescription for empirical treatments can greatly improve upon the current standard of care. a, For each 
of the six antibiotics, we calculated the fraction (top) of resistant (red) and sensitive (green) samples, as well as the risk of resistance (bottom), for all 
samples within the 1-year test period whose complete-model machine-learning assigned probabilities of resistance Pk

m were below a set threshold Pthreshold 
(x axis; see Supplementary Fig. 2 for all antibiotics and more formal definitions). At Pthreshold!=!1 the risk of sample resistance equals the population-wide risk 
of resistance (dotted red line). Setting Pthreshold!=!0.12 would permit treatment of 75% of these infections with much reduced risk of resistance compared 
with the population-wide risk (48% reduction, down-pointing arrow). b, Differentiation between samples resistant to cefuroxime axetil and sensitive to 
nitrofurantoin (red) and vice versa (blue) by their model-assigned resistance probabilities (OR of 3.9 for red points below the diagonal and blue points 
above it; P!<!10−100, Fisher’s exact test; see Supplementary Fig. 3 for all pairs of antibiotics). c, Physician’s frequency of mismatched prescriptions across all 
SDET cases (dark bar) was slightly better than the null expectation for randomly prescribing drugs with equal probabilities (random ‘dice’, magenta dashed, 
P!<!10−10) or for randomly permuting the physicians’ prescriptions (random permutations, cyan dashed, P!=!2.5!×!10−5). These mismatch treatment rates were 
substantially reduced by the machine-learning (ML)-based recommendations (light bars), either unconstrained (magenta hatched, P!<!10−10) or constrained 
to recommend drugs at the exact same frequencies prescribed by the physicians (cyan hatched, P!<!10−10). d, Top, distribution of the drugs prescribed by the 
physicians (dark bar), by the constrained algorithm (cyan-hashed light bar, constrained to be equal to the physician’s) and by the unconstrained algorithm 
(magenta-hashed light bar). Bottom, for each of these prescription models, the frequency of mismatched treatment for each of the drugs is indicated, 
normalized by the expected mismatch frequency for random drug prescription (the average rate of resistance to the drug across the SDET population).
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Fig. 5 | Algorithmically suggesting antibiotic prescription for empirical treatments can greatly improve upon the current standard of care. a, For each 
of the six antibiotics, we calculated the fraction (top) of resistant (red) and sensitive (green) samples, as well as the risk of resistance (bottom), for all 
samples within the 1-year test period whose complete-model machine-learning assigned probabilities of resistance Pk

m were below a set threshold Pthreshold 
(x axis; see Supplementary Fig. 2 for all antibiotics and more formal definitions). At Pthreshold!=!1 the risk of sample resistance equals the population-wide risk 
of resistance (dotted red line). Setting Pthreshold!=!0.12 would permit treatment of 75% of these infections with much reduced risk of resistance compared 
with the population-wide risk (48% reduction, down-pointing arrow). b, Differentiation between samples resistant to cefuroxime axetil and sensitive to 
nitrofurantoin (red) and vice versa (blue) by their model-assigned resistance probabilities (OR of 3.9 for red points below the diagonal and blue points 
above it; P!<!10−100, Fisher’s exact test; see Supplementary Fig. 3 for all pairs of antibiotics). c, Physician’s frequency of mismatched prescriptions across all 
SDET cases (dark bar) was slightly better than the null expectation for randomly prescribing drugs with equal probabilities (random ‘dice’, magenta dashed, 
P!<!10−10) or for randomly permuting the physicians’ prescriptions (random permutations, cyan dashed, P!=!2.5!×!10−5). These mismatch treatment rates were 
substantially reduced by the machine-learning (ML)-based recommendations (light bars), either unconstrained (magenta hatched, P!<!10−10) or constrained 
to recommend drugs at the exact same frequencies prescribed by the physicians (cyan hatched, P!<!10−10). d, Top, distribution of the drugs prescribed by the 
physicians (dark bar), by the constrained algorithm (cyan-hashed light bar, constrained to be equal to the physician’s) and by the unconstrained algorithm 
(magenta-hashed light bar). Bottom, for each of these prescription models, the frequency of mismatched treatment for each of the drugs is indicated, 
normalized by the expected mismatch frequency for random drug prescription (the average rate of resistance to the drug across the SDET population).
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Fig. 5 | Algorithmically suggesting antibiotic prescription for empirical treatments can greatly improve upon the current standard of care. a, For each 
of the six antibiotics, we calculated the fraction (top) of resistant (red) and sensitive (green) samples, as well as the risk of resistance (bottom), for all 
samples within the 1-year test period whose complete-model machine-learning assigned probabilities of resistance Pk

m were below a set threshold Pthreshold 
(x axis; see Supplementary Fig. 2 for all antibiotics and more formal definitions). At Pthreshold!=!1 the risk of sample resistance equals the population-wide risk 
of resistance (dotted red line). Setting Pthreshold!=!0.12 would permit treatment of 75% of these infections with much reduced risk of resistance compared 
with the population-wide risk (48% reduction, down-pointing arrow). b, Differentiation between samples resistant to cefuroxime axetil and sensitive to 
nitrofurantoin (red) and vice versa (blue) by their model-assigned resistance probabilities (OR of 3.9 for red points below the diagonal and blue points 
above it; P!<!10−100, Fisher’s exact test; see Supplementary Fig. 3 for all pairs of antibiotics). c, Physician’s frequency of mismatched prescriptions across all 
SDET cases (dark bar) was slightly better than the null expectation for randomly prescribing drugs with equal probabilities (random ‘dice’, magenta dashed, 
P!<!10−10) or for randomly permuting the physicians’ prescriptions (random permutations, cyan dashed, P!=!2.5!×!10−5). These mismatch treatment rates were 
substantially reduced by the machine-learning (ML)-based recommendations (light bars), either unconstrained (magenta hatched, P!<!10−10) or constrained 
to recommend drugs at the exact same frequencies prescribed by the physicians (cyan hatched, P!<!10−10). d, Top, distribution of the drugs prescribed by the 
physicians (dark bar), by the constrained algorithm (cyan-hashed light bar, constrained to be equal to the physician’s) and by the unconstrained algorithm 
(magenta-hashed light bar). Bottom, for each of these prescription models, the frequency of mismatched treatment for each of the drugs is indicated, 
normalized by the expected mismatch frequency for random drug prescription (the average rate of resistance to the drug across the SDET population).
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resistance, for example ciprofloxacin, which is often intentionally 
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tion of each drug to the rate at which it was prescribed by physicians. 
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Fig. 5 | Algorithmically suggesting antibiotic prescription for empirical treatments can greatly improve upon the current standard of care. a, For each 
of the six antibiotics, we calculated the fraction (top) of resistant (red) and sensitive (green) samples, as well as the risk of resistance (bottom), for all 
samples within the 1-year test period whose complete-model machine-learning assigned probabilities of resistance Pk

m were below a set threshold Pthreshold 
(x axis; see Supplementary Fig. 2 for all antibiotics and more formal definitions). At Pthreshold!=!1 the risk of sample resistance equals the population-wide risk 
of resistance (dotted red line). Setting Pthreshold!=!0.12 would permit treatment of 75% of these infections with much reduced risk of resistance compared 
with the population-wide risk (48% reduction, down-pointing arrow). b, Differentiation between samples resistant to cefuroxime axetil and sensitive to 
nitrofurantoin (red) and vice versa (blue) by their model-assigned resistance probabilities (OR of 3.9 for red points below the diagonal and blue points 
above it; P!<!10−100, Fisher’s exact test; see Supplementary Fig. 3 for all pairs of antibiotics). c, Physician’s frequency of mismatched prescriptions across all 
SDET cases (dark bar) was slightly better than the null expectation for randomly prescribing drugs with equal probabilities (random ‘dice’, magenta dashed, 
P!<!10−10) or for randomly permuting the physicians’ prescriptions (random permutations, cyan dashed, P!=!2.5!×!10−5). These mismatch treatment rates were 
substantially reduced by the machine-learning (ML)-based recommendations (light bars), either unconstrained (magenta hatched, P!<!10−10) or constrained 
to recommend drugs at the exact same frequencies prescribed by the physicians (cyan hatched, P!<!10−10). d, Top, distribution of the drugs prescribed by the 
physicians (dark bar), by the constrained algorithm (cyan-hashed light bar, constrained to be equal to the physician’s) and by the unconstrained algorithm 
(magenta-hashed light bar). Bottom, for each of these prescription models, the frequency of mismatched treatment for each of the drugs is indicated, 
normalized by the expected mismatch frequency for random drug prescription (the average rate of resistance to the drug across the SDET population).
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to overfit data owing to small sample sizes in some instances. It has 
also been pointed out how essential it is to have κ -fold cross-valida-
tion of a model through successive, mutually exclusive validation 
datasets, which is missing from most of these publications. There is 
also considerable debate about using AUC as the key performance 
metric, since it ignores actual probability values and may be partic-
ularly misleading in regard to the sensitivity and specificity values 
that are of clinical interest113.

In summary, it is not yet known how well AI can predict key 
outcomes in the healthcare setting, and this will not be determined 
until there is robust validation in prospective, real-world clinical 
environments, with rigorous statistical methodology and analysis.

Machine vision. Machine vision (also known as computer vision), 
which uses data from ambient sensors, is attracting considerable 
attention in health systems for promoting safety by monitoring such 
activities as proper clinician handwashing114, critically ill patients in 
the intensive care unit115, and risk of falling for patients116. Weaning 
patients in the intensive care unit from mechanical ventilation is 
often haphazard and inefficient; a reinforcement-learning algo-
rithm using machine vision has shown considerable promise in 
this regard117. There are also ongoing efforts to digitize surgery that 
include machine vision observation of the team and equipment in 
the operating room and performance of the surgeon; real-time, 
high-resolution, AI-processed imaging of the relevant anatomy of a 
patient; and integration of all of a patient’s preoperative data, includ-
ing full medical history, labs, and scans118,119. Extremely delicate 
microsurgery, such as that inside the eye, has now been performed 
with AI assistance120. There is considerable promise in markedly 
reducing the radiation and time requirements for image acquisi-
tion and segmentation in preparation for radiotherapy via the use of 
deep-learning algorithms for image reconstruction121 and of genera-
tive adversarial networks to improve the quality of medical scans. 
These improvements will, when widely implemented, promote 
safety, convenience, and lower cost122–124.

Wearables. Of the more than $3.5 trillion per year (and rising) 
expenditures for healthcare in the United States, almost a third is 
related to hospitals. With FDA-approved wearable sensors that can 
continuously monitor all vital signs—including blood pressure, 
heart rate and rhythm, blood oxygen saturation, respiratory rate, 
and temperature—there is the potential to preempt a large num-
ber of patients being hospitalized in the future. There has not yet 
been algorithmic development and prospective testing for remote 
monitoring, but this deserves aggressive pursuit as it could reduce 

the costs of care without sacrificing convenience and comfort for a 
patient and family. The reduction of nosocomial infections alone 
would be an alluring path for promoting safety.

Increased efficiencies. It has been estimated that, per day, AI would 
process over 250 million images for the cost of about $1,000 (ref. 125), 
representing a staggering hypothetical savings of billions of dollars. 
Besides the productivity and workflow gains that can be derived 
from AI-assisted image interpretation and clinician support, there 
is potential to reduce the workforce for many types of back-office, 
administrative jobs such as coding and billing, scheduling of oper-
ating rooms and clinic appointments, and staffing. At Geisinger 
Health in Pennsylvania, over 100,000 patients have undergone 
exome sequencing; the results are provided via an AI chatbot (Clear 
Genetics), which is well-received by most patients and reduces the 
need for genetic counselors. This demonstrates how a health system 
can leverage AI tools to provide complex information without hav-
ing to rely on expansion of highly trained personnel.

Perhaps the greatest long-term potential of AI in health sys-
tems is the development of a massive data infrastructure to support 
nearest-neighbor analysis, another application of AI used to identify 
‘digital twins.’ If each person’s comprehensive biologic, anatomic, 
physiologic, environmental, socioeconomic, and behavioral data, 
including treatment and outcomes, were entered, an extraordinary 
learning system would be created. There have been great benefits 
derived from jet engine126 digital twins that use an ultrahigh-fidelity 
model engine to simulate the flight conditions of a particular jet, but 
such a model has yet to be completed at any scale for patients, who 
theoretically could benefit from being informed of the best preven-
tion methods, treatments, and outcomes for various conditions by 
their relevant twin’s data127.

Artifical intelligence and patients
The work for developing deep-learning algorithms to enable the 
public to take their healthcare into their own hands has lagged 
behind that for clinicians and health systems, but there are a 
few such algorithms that have been FDA-cleared or are in late-
stage clinical development. In late 2017, a smartwatch algorithm 
was FDA-cleared to detect atrial fibrillation128, and subsequently  
in 2018 Apple received FDA approval for their algorithm used  
with the Apple Watch Series 4 (refs. 129,130). The photoplethysmog-
raphy and accelerometer sensors on the watch learn the user’s  
heart rate at rest and with physical activity, and when there is a sig-
nificant deviation from expected, the user is given a haptic warn-
ing to record an ECG via the watch, which is then interpreted by 
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to overfit data owing to small sample sizes in some instances. It has 
also been pointed out how essential it is to have κ -fold cross-valida-
tion of a model through successive, mutually exclusive validation 
datasets, which is missing from most of these publications. There is 
also considerable debate about using AUC as the key performance 
metric, since it ignores actual probability values and may be partic-
ularly misleading in regard to the sensitivity and specificity values 
that are of clinical interest113.

In summary, it is not yet known how well AI can predict key 
outcomes in the healthcare setting, and this will not be determined 
until there is robust validation in prospective, real-world clinical 
environments, with rigorous statistical methodology and analysis.

Machine vision. Machine vision (also known as computer vision), 
which uses data from ambient sensors, is attracting considerable 
attention in health systems for promoting safety by monitoring such 
activities as proper clinician handwashing114, critically ill patients in 
the intensive care unit115, and risk of falling for patients116. Weaning 
patients in the intensive care unit from mechanical ventilation is 
often haphazard and inefficient; a reinforcement-learning algo-
rithm using machine vision has shown considerable promise in 
this regard117. There are also ongoing efforts to digitize surgery that 
include machine vision observation of the team and equipment in 
the operating room and performance of the surgeon; real-time, 
high-resolution, AI-processed imaging of the relevant anatomy of a 
patient; and integration of all of a patient’s preoperative data, includ-
ing full medical history, labs, and scans118,119. Extremely delicate 
microsurgery, such as that inside the eye, has now been performed 
with AI assistance120. There is considerable promise in markedly 
reducing the radiation and time requirements for image acquisi-
tion and segmentation in preparation for radiotherapy via the use of 
deep-learning algorithms for image reconstruction121 and of genera-
tive adversarial networks to improve the quality of medical scans. 
These improvements will, when widely implemented, promote 
safety, convenience, and lower cost122–124.

Wearables. Of the more than $3.5 trillion per year (and rising) 
expenditures for healthcare in the United States, almost a third is 
related to hospitals. With FDA-approved wearable sensors that can 
continuously monitor all vital signs—including blood pressure, 
heart rate and rhythm, blood oxygen saturation, respiratory rate, 
and temperature—there is the potential to preempt a large num-
ber of patients being hospitalized in the future. There has not yet 
been algorithmic development and prospective testing for remote 
monitoring, but this deserves aggressive pursuit as it could reduce 

the costs of care without sacrificing convenience and comfort for a 
patient and family. The reduction of nosocomial infections alone 
would be an alluring path for promoting safety.

Increased efficiencies. It has been estimated that, per day, AI would 
process over 250 million images for the cost of about $1,000 (ref. 125), 
representing a staggering hypothetical savings of billions of dollars. 
Besides the productivity and workflow gains that can be derived 
from AI-assisted image interpretation and clinician support, there 
is potential to reduce the workforce for many types of back-office, 
administrative jobs such as coding and billing, scheduling of oper-
ating rooms and clinic appointments, and staffing. At Geisinger 
Health in Pennsylvania, over 100,000 patients have undergone 
exome sequencing; the results are provided via an AI chatbot (Clear 
Genetics), which is well-received by most patients and reduces the 
need for genetic counselors. This demonstrates how a health system 
can leverage AI tools to provide complex information without hav-
ing to rely on expansion of highly trained personnel.

Perhaps the greatest long-term potential of AI in health sys-
tems is the development of a massive data infrastructure to support 
nearest-neighbor analysis, another application of AI used to identify 
‘digital twins.’ If each person’s comprehensive biologic, anatomic, 
physiologic, environmental, socioeconomic, and behavioral data, 
including treatment and outcomes, were entered, an extraordinary 
learning system would be created. There have been great benefits 
derived from jet engine126 digital twins that use an ultrahigh-fidelity 
model engine to simulate the flight conditions of a particular jet, but 
such a model has yet to be completed at any scale for patients, who 
theoretically could benefit from being informed of the best preven-
tion methods, treatments, and outcomes for various conditions by 
their relevant twin’s data127.

Artifical intelligence and patients
The work for developing deep-learning algorithms to enable the 
public to take their healthcare into their own hands has lagged 
behind that for clinicians and health systems, but there are a 
few such algorithms that have been FDA-cleared or are in late-
stage clinical development. In late 2017, a smartwatch algorithm 
was FDA-cleared to detect atrial fibrillation128, and subsequently  
in 2018 Apple received FDA approval for their algorithm used  
with the Apple Watch Series 4 (refs. 129,130). The photoplethysmog-
raphy and accelerometer sensors on the watch learn the user’s  
heart rate at rest and with physical activity, and when there is a sig-
nificant deviation from expected, the user is given a haptic warn-
ing to record an ECG via the watch, which is then interpreted by 
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Futurework will now explore the integration of this systemwith
other forms of decision support housed within EPIC IMPOC and
evaluate the direct impact of the algorithm on infection manage-
ment in secondary care.

Conclusions
A supervisedmachine learning algorithm embedded within a clin-
ical decision support tool can support the diagnosis of infection in
patients presenting to hospital. Future work must explore the po-
tential impact of classifier systems similar to this on the decision-
making of clinicians who manage infections as part of multi-
modal decision support packages.
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an algorithm. There are legitimate concerns that the widescale use 
of such an algorithm, particularly in the low-risk, young popula-
tion who wear Apple watches, will lead to a substantial number of 
false-positive atrial fibrillation diagnoses and prompt unnecessary 
medical evalautions131. In contrast, the deep learning of the ECG 
pattern on the smartwatch, which can accurately detect whether 
there is high potassium in the blood, may provide particular useful-
ness for patients with kidney disease. This concept of a ‘bloodless’ 
blood potassium level (Fig. 2) reading via a smartwatch algorithm 
embodies the prospect of an algorithm able to provide informa-
tion that was not previously obtainable or discernible without  
the technology.

Smartphone exams with AI are being pursued for a variety of 
medical diagnostic purposes, including skin lesions and rashes, ear 
infections, migraine headaches, and retinal diseases such as diabetic 
retinopathy and age-related macular degeneration. Some smart-
phone apps are using AI to monitor medical adherence, such as 
AiCure (NCT02243670), which has the patient take a selfie video as 
they swallow their prescribed pill. Other apps use image recognition 
of food for calorie and nutritional content132. In what may be seen as 
an outgrowth of dating apps that use AI nearest-neighbor analysis 
to find matches, there are now efforts to use the same methodology 
for matchmaking patients with primary care doctors to engender 
higher levels of trust133.

One study has recently achieved the continuous sensing of 
blood-glucose (for 2 weeks) along with assessment of the gut 
microbiome, physical activity, sleep, medications, all food and bev-
erage intake, and a variety of lab tests134–136. This multimodal data 
collection and analysis has led to the ability to predict the glycemic 
response to specific foods for an individual, a physiologic pattern 
that is remarkably heterogeneous among people and significantly 
driven by the gut microbiome. The use of continuous glucose sen-
sors, which now are factory-calibrated, preempting the need for 
finger-stick glucose calibrations, has shown that post-prandial 
glucose spikes commonly occur, even in healthy people without  
diabetes137,138. It remains uncertain whether the glucose spikes 
indicate a higher risk of developing diabetes, but there are data 
suggesting this possibility139 along with mechanistic links to gas-
trointestinal barrier dysfunction140,141 in experimental models. 
Nevertheless, the use of AI with multimodal data to guide an indi-
vidualized diet is a precedent for virtual medical coaching in the 
future. In the present, simple rules-based algorithms, based upon 
whether glucose values are rising or falling, are used for glucose 
management in people with diabetes. While these have helped 
avert hypoglycemic episodes142, smart algorithms that incorpo-
rate an individual’s comprehensive data are likely to be far more 
informative and helpful. In this manner, most common chronic 
conditions, such as hypertension, depression, and asthma, could 

theoretically be better managed with virtual coaching. With the 
remarkable progress in the accuracy of AI speech recognition and 
the accompanying soaring popularity of smart speakers, it is easy 
to envision that this would be performed via a voice platform, with 
or without an avatar. Eventually, when all of an individual’s data 
and the corpus of medical literature can be incorporated, a holistic, 
prevention approach would be possible (Fig. 3).

Artificial intelligence and data analysis
While upstream from clinical practice, AI progress in life science 
has been notably faster, with extensive peer-reviewed publication, 
an easier path to validation without regulatory oversight, and far 
more willingness among the scientific community for implemen-
tation. As the stethoscope is the icon of doctors, the microscope 
is the icon of scientists. Using AI, Christiansen et al. 143 developed 
in silico labeling. Instead of the routine fluorescent staining of 
microscopic images, which can harm and kill cells and involves 
a complex preparation, this machine-learning algorithm predicts 
the fluorescent labels, ushering in ‘image-free’ microscopy143–145. 
Soon thereafter, Ota et al.146 reported another image-free flow AI 
analytic method that they called ‘ghost cytometry’ to accurately 
identify rare cells, a capability that was replicated and extended 
by Nitta et al.147 with image-activated AI cell sorting. This use of 
machine learning addresses the formidable problem of identifying 
and isolating rare cells by rapid, high-throughput, and accurate 
sorting on the basis of cell morphology that does not require the 
use of biomarkers. Besides promoting image-free microcopy and 
cytometry, deep-learning AI has been used to restore or fix out-
of-focus images148. And computer vision has made possible high-
throughput assessment of 40-plex proteins and organelles within 
a single cell149,150.

Another challenge confronted by machine and deep learning has 
been in the analytics of genomic and other -omics biology datasets. 
Open-source algorithms have been developed for classifying or ana-
lyzing whole-genome sequence pathogenic variants151–158, somatic 
cancer mutations159, gene–gene interactions160, RNA sequencing 
data161, methylation162, prediction of protein structure and protein–
protein interactions163, the microbiome164, and single cells165. While 
these reports have generally represented a single -omics approach, 
there are now multi-omic algorithms being developed166,167 that 
integrate the datasets. The use of genome editing has also been 
facilitated by algorithmic prediction of CRISPR guide RNA activ-
ity168 and off-target activities169.

Noteworthy is the use of AI tools to enhance understanding of 
how cancer evolves via application of a transfer-learning algorithm 
to multiregional tumor-sequencing data170 and of machine vision 
for analysis of live cancer cells at single-cell resolution via micro-
fluidic isolation171. Both of these novel approaches may ultimately 
be helpful in both risk stratification of patients and guiding therapy.

With the AI descriptor of neural networks, it is not surpris-
ing that there is bidirectional inspiration: biological neuroscience 
impacting AI and vice versa172. A couple of examples in Drosophila 
are noteworthy. Robie et al.173 took videos of 400,00 flies and used 
machine learning and machine vision to map phenotype with gene 
expression and neuroanatomy. Whole-brain maps were generated 
for movement, female aggression, and many other traits. In another 
study, nearest-neighbor analysis was used to understand how odors 
are sensed by the flies, that is, their smell algorithm174.

AI has been used to reconstruct neural circuits, allowing an 
understanding of connectomics, from electron microscopy175. 
One of the most impressive advances facilitated by AI has been 
in understanding the human brain’s grid cells—which enable 
perception of the speed and direction of movement of the body, 
i.e., its place in space176,177. Reciprocally, neuromorphic comput-
ing, or reverse-engineering of the brain to make computer chips, 
is not only leading to more efficient computing, but also helping 
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Fig. 4 | Call for due process of AI studies in medicine. The need to publish 
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