

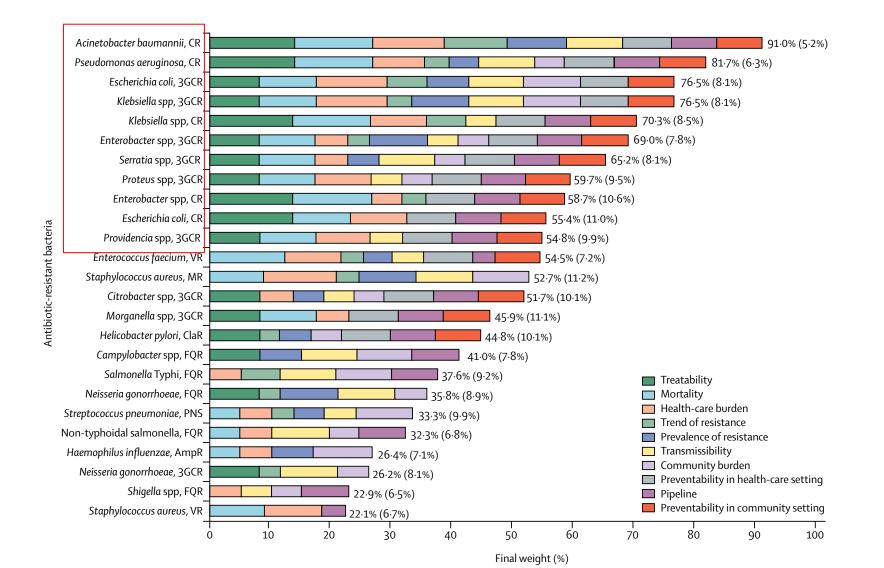




Journées Claude Bernard 2020

# Actualités sur les nouveaux antibiotiques anti Gram négatifs

### Aurélien Dinh


Maladies infectieuses, Hôpital R Poincaré, APHP Université Paris Saclay

### Liens d'intérêt

- Menarini
- MSD
- Astellas
- Pfizer
- Correvio

#### Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis

Evelina Tacconelli, Elena Carrara\*, Alessia Savoldi\*, Stephan Harbarth, Marc Mendelson, Dominique L Monnet, Céline Pulcini, Gunnar Kahlmeter, Jan Kluytmans, Yehuda Carmeli, Marc Ouellette, Kevin Outterson, Jean Patel, Marco Cavaleri, Edward M Cox, Chris R Houchens, M Lindsay Grayson, Paul Hansen, Nalini Singh, Ursula Theuretzbacher, Nicola Magrini, and the WHO Pathogens Priority List Working Group†



3

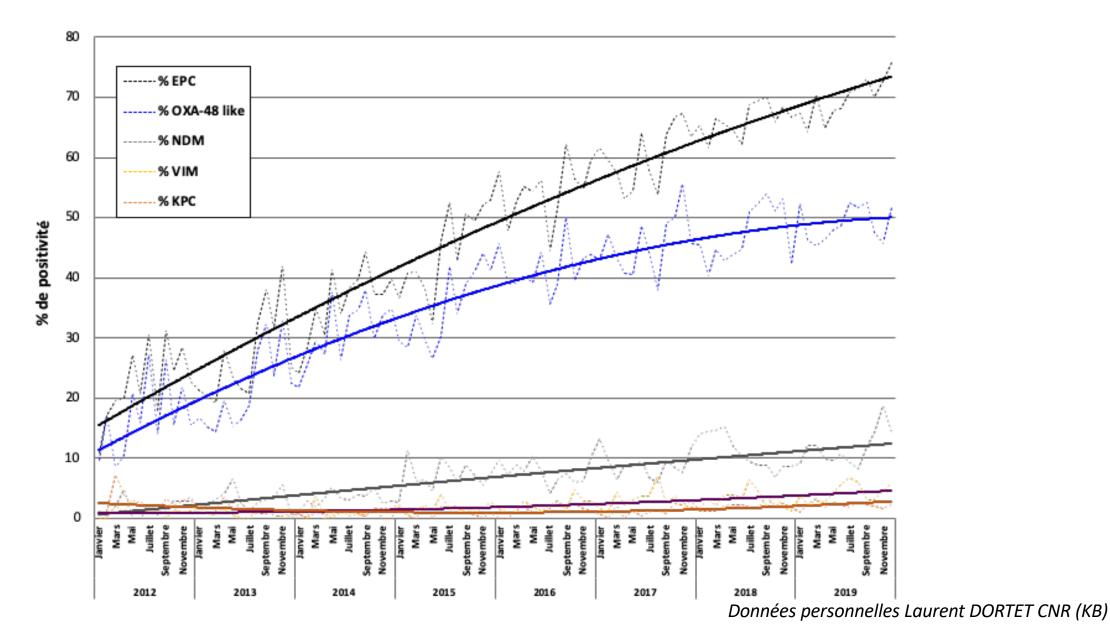


REVIEW



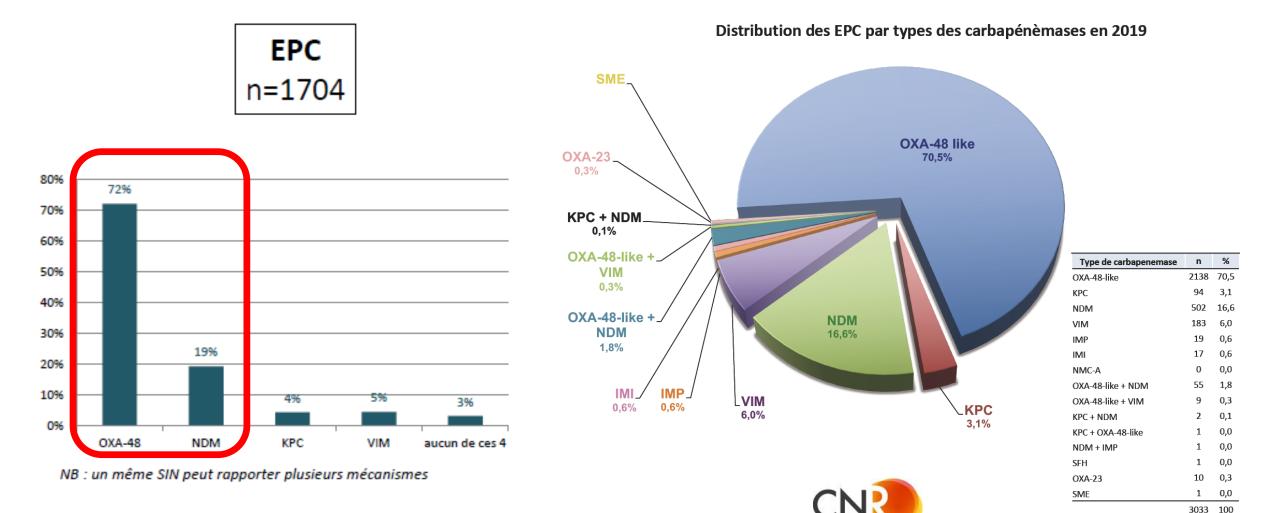
Nadim G. El Chakhtoura<sup>a,b,c</sup>, Elie Saade<sup>a,b,c,d</sup>, Alina lovleva<sup>e</sup>, Mohamad Yasmin<sup>a,b,d</sup>, Brigid Wilson<sup>a,b,c</sup>, Federico Perez<sup>a,b,c</sup> and Robert A. Bonomo<sup>a,b,c,d,f,g,h</sup>

« It has been suggested that the rate of CR nonfermenters now surpass that of Enterobacterales, representing a greater challenge for severe infections management » ECDC


Check for updates

### Classification d'Ambler des β-lactamases

| Ambler Class      | Α                                                                                                                                   | В                                           | С                                                             | D                                                                   |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|
| Active Site       | Serine                                                                                                                              | Metallo<br>(zinc-binding thiol)             | Serine                                                        | Serine                                                              |
| Enzyme Type       | TEM, SHV,<br>CTX-M <u>, KPC</u>                                                                                                     | NMD-1, IMP,<br>VIM                          | AmpC, CMY                                                     | OXA                                                                 |
| Host<br>Organisms | Enterobacteriaceae<br>and<br>Non-fermenters                                                                                         | Enterobacteriaceae<br>and<br>Non-fermenters | Enterobacter spp.<br>Citrobater spp.                          | Enterobacteriaceae<br>and<br>Non-fermenters                         |
| Substrates        | Ampicillin; cephalotin;<br>penicillins; 3 <sup>rd</sup> gen<br>cephalosporins; Extended-<br>spectrum cephalosporins;<br>carbapenems | All β-lactams                               | Cephamycins;<br>3 <sup>rd</sup> -generation<br>cephalosporins | Cloxacillin;<br>Extended-spectrum<br>cephalosporins;<br>carbapenems |


KPC-2 is the most prevalent class A carbapenemase in the world and can hydrolyze the β-lactamase inhibitors clavulanic acid, sulbactam, and tazobactam.

# Evolution du % d'EPC reçues et du % des principales carbapénèmases parmi les souches reçues au CNR entre 2012 et 2019

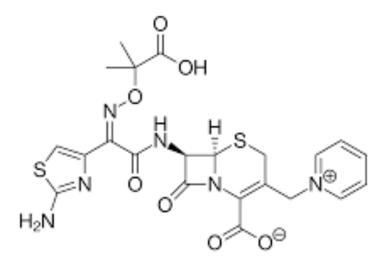


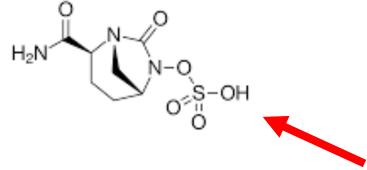
9

### **EPC : répartition en France**



 RÉSISTANCE AUX ANTIBIOTIOUES


\_




- Ceftazidime Avibactam
- Méropénème Vaborbactam
- Imipénème Relebactam
- Cefiderocol
- (Plazomicine)

## **Ceftazidime Avibactam**

# **Ceftazidime Avibactam**





- Avibactam = diazabicyclooctane
- Avibactam se lie de manière réversible à
  - β-lactamases de classe A (KPC carbapénèmases)
  - β-lactamases de classe C
  - Certaines classe C (ie, **OXA-48**),
  - Mais pas les MBLs (NDM carbapénèmases)

### Ceftazidime-Avibactam Is Superior to Other Treatment Regimens against Carbapenem-Resistant *Klebsiella pneumoniae* Bacteremia

Ryan K. Shields,<sup>a,c</sup> M. Hong Nguyen,<sup>a,c</sup> Liang Chen,<sup>d</sup> Ellen G. Press,<sup>a</sup> Brian A. Potoski,<sup>a,c,e</sup> Rachel V. Marini,<sup>c</sup> Yohei Doi,<sup>a,c</sup> Barry N. Kreiswirth,<sup>d</sup> Cornelius J. Clancy<sup>a,b,f</sup>

- Etude rétrospective (2009-2017) moncentrique
- Bactériémie à K. pneumoniae résistante aux carbapénèmes et ≥ 3j de traitement
- Traitement définitif par
- carbapénème et aminoglycoside [CB+AG],

AAC 2017

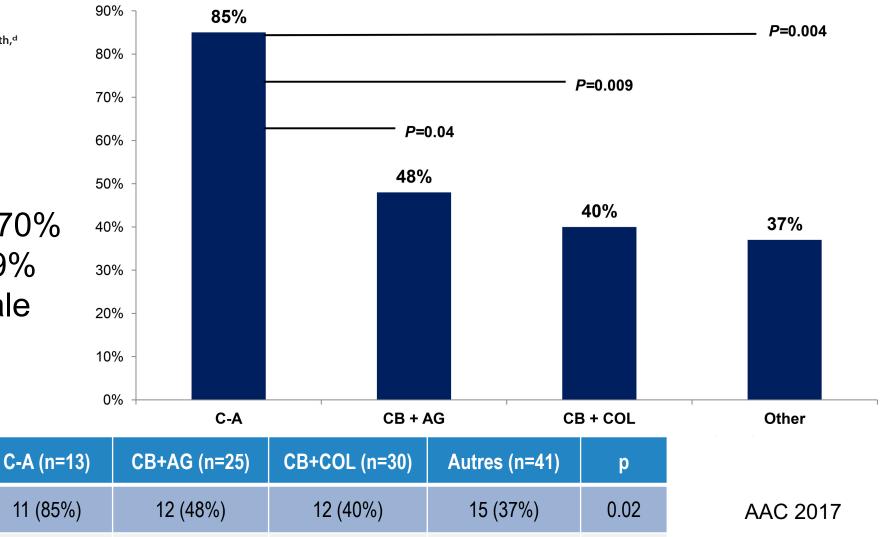
- carbapénème et colistine [CB+COL],
- Autres [comprenant monothérapie AG ou COL]).
- Succès clinique à J30

| Caractéristiques             | C-A (n=13) | CB+AG (n=25) | CB+COL (n=30) | Autres (n=41) | р    |
|------------------------------|------------|--------------|---------------|---------------|------|
| Sexe masculin                | 7 (54%)    | 16 (64)      | 18 (60)       | 21 (51)       | 0.75 |
| Âge (médian, range)          | 66 (32–91) | 57 (32–87)   | 59 (26–84)    | 62 (25–90)    | 0.63 |
| Hépatopathie                 | 0 (0)      | 9 (36%)      | 9 (30%)       | 13 (32%)      | 0.11 |
| Insuffisance<br>respiratoire | 5 (38%)    | 5 (20%)      | 8 (27%)       | 8 (20%)       | 0.51 |
| Immunodéprimé                | 5 (38%)    | 13 (52%)     | 14 (47%)      | 22 (54%)      | 0.78 |
| Transplanté organe<br>solide | 3 (23%)    | 11 (44%)     | 9 (30%)       | 17 (41%)      | 0.46 |
| Score de Pitt                | 4 (1–6)    | 4 (0–9)      | 4 (0–9)       | 4 (0–9)       | 0.74 |
| Score APACHE II              | 20 (16–33) | 17 (8–38)    | 16 (7–36)     | 19 (4–34)     | 0.46 |
| KPC                          | 13 (100%)  | 24 (96%)     | 30 (100%)     | 39 (95%)      | 0.56 |
| Bactériémie primitive        | 3 (23%)    | 6 (24%)      | 5 (17%)       | 14 (34%)      | 0.41 |
| Abdominale                   | 2 (15%)    | 12 (48%)     | 16 (53%)      | 20 (49%)      | ns   |
| Respiratoire                 | 3 (23%)    | 2 (8%)       | 6 (20%)       | 3 (7%)        | ns   |
| Urinaire                     | 5 (38%)    | 2 (8ù)       | 2 (7%)        | 4 (10%)       | ns   |
|                              |            |              |               |               | 17   |

### Ceftazidime-Avibactam Is Superior to Other Treatment Regimens against Carbapenem-Resistant *Klebsiella pneumoniae* Bacteremia

Ryan K. Shields,<sup>a,c</sup> M. Hong Nguyen,<sup>a,c</sup> Liang Chen,<sup>d</sup> Ellen G. Press,<sup>a</sup> Brian A. Potoski,<sup>a,c,e</sup> Rachel V. Marini,<sup>c</sup> Yohei Doi,<sup>a,c</sup> Barry N. Kreiswirth,<sup>d</sup> Cornelius J. Clancy<sup>a,b,f</sup>

37 EPC dont 31 KPC Monothérapie CAZ AVI 70% Succès clinique J30 : 59% Meilleure tolérance rénale


Caractéristiques

Succès clinique

Survie J90

12 (92%)

14 (56%)



20 (49%)

19 (63%)

0,04

#### Ceftazidime-Avibactam Is Superior to Other Treatment Regimens against Carbapenem-Resistant *Klebsiella pneumoniae* Bacteremia

Ryan K. Shields,<sup>a,c</sup> M. Hong Nguyen,<sup>a,c</sup> Liang Chen,<sup>d</sup> Ellen G. Press,<sup>a</sup> Brian A. Potoski,<sup>a,c,e</sup> Rachel V. Marini,<sup>c</sup> Yohei Doi,<sup>a,c</sup> Barry N. Kreiswirth,<sup>d</sup> Cornelius J. Clancy<sup>a,b,f</sup>

### Analyse multivariée succès

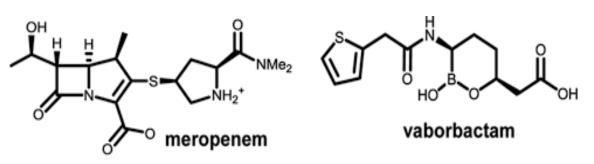
| Facteurs (succès)             | Guérison<br>(n=50) | Echec<br>(n=59) | Р      | OR (IC 95%)       |
|-------------------------------|--------------------|-----------------|--------|-------------------|
| Néoplasie (n,%)               | 7 (14)             | 17 (29)         | 0,1    | _                 |
| Bactériémie primitive (n,%)   | 19 (38)            | 9 (15)          | 0,006  | 4,5 (1,53-13,12)  |
| Dialyse (n,%)                 | 6 (12)             | 18 (31)         | 0,2    | _                 |
| Score de Pitt (mediane-range) | 3 (0-9)            | 5 (0-9)         | O,15   | _                 |
| APACHE II (mediane-range)     | 17 (7-38)          | 21 (4-36)       | exclus | _                 |
| Réanimation (n,%)             | 21 (42)            | 35 (59)         | 0,24   | _                 |
| Multi thérapie (≥2 ATB) (n,%) | 21 (42)            | 11 (19)         | exclus | _                 |
| <b>TTT par C-A</b> (n,%)      | 11 (22)            | 2 (3)           | 0,01   | 8,64 (1,61-46,39) |

# **Résistance et CAZ AVI**

- Emergence de Résistance chez KI. pn KPC : jusqu'à 10% (mutation gène bla KPC)
- FDR : hémodialyse, posologies insuffisantes
- Variants hydrolysés par les carbapénèmes >> souches sensibles aux carbapénèmes
- Signification clinique inconnue !?!



Shields *et al.* CID 2016 Haidar et al. AAC 2017




COMMISSION DE LA TRANSPARENCE Avis

- La Commission considère que purperfusion vaborem, 1 g/1 g poudre pour solution à diluer pour perfusion amélioration du service médical rendu modérée (ASMR III) dans la prise en charge des infections à entérobactéries sensibles à la ceftazidime/avibactam et pour lesquels le recours aux autres bêta-lactamines et aux carbapénèmes (méropénème ou imipénème/cilastatine) n'est pas envisageable en cas de résistance.
- Activité *in vitro* sur *Pseudomonas aeruginosa* et sur les entérobactéries sécrétrices de bêta-lactamases à spectre étendu (EBLSE), notamment de KPC et OXA-48

# Méropénème Vaborbactam

# Meropénème Vaborbactam



• Disponibilité en France: Juillet 2020

- Vaborbactam : nouvel inhibiteur de βlactamase >> acide boronique
- Inhibe de manière réversible et compétitive
  - Classe A Ambler (KPC)
  - Classe C
- Pas d'action sur
  - Classe B (MBL)
  - Classe D (OXA 48)
- N'augmente pas efficacité Mero sur souche Pyo Mero R
- **PK/PD similaire méropénème et vaborbactam**



#### ORIGINAL RESEARCH

#### Effect and Safety of Meropenem–Vaborbactam versus Best-Available Therapy in Patients with Carbapenem-Resistant Enterobacteriaceae Infections: The TANGO II Randomized Clinical Trial

Richard G. Wunderink · Evangelos J. Giamarellos-Bourboulis · Galia Rahav · Amy J. Mathers · Matteo Bassetti · Jose Vazquez · Oliver A. Cornely · Joseph Solomkin · Tanaya Bhowmick · Jihad Bishara · George L. Daikos · Tim Felton · Maria Jose Lopez Furst · Eun Jeong Kwak · Francesco Menichetti · Ilana Oren · Elizabeth L. Alexander · David Griffith · Olga Lomovskaya · Jeffery Loutit · Shu Zhang · Michael N. Dudley · Keith S. Kaye

- TANGOII : Essai randomisé ouvert (2014-2017) (2:1)
- Monothérapie Meropénème Vaborbactam vs meilleur traitement possible pour EPC
- Différents type d'infections
- 47 EPC confirmés = population MITT
- Guérison clinique
- Mortalité J28

|                                                       | Caractéristiques                 | M-V (n=32)  | BAT (n=15)  |
|-------------------------------------------------------|----------------------------------|-------------|-------------|
| CrossMark                                             | Âge (médian, SD)                 | 63.5 (14.1) | 60.2 (13.0) |
|                                                       | Sexe féminin                     | 18 (56.3%)  | 5 (33.3%)   |
| aborbactam                                            | Point de départ                  |             |             |
| atients<br>obacteriaceae                              | Bactériémie primitive            | 14 (43.8%)  | 8 (53.3%)   |
| ized Clinical Trial                                   | Infections urinaires             | 12 (37.5%)  | 4 (26.7%)   |
| alia Rahav • Amy J. Mathers •                         | Infections respiratoires         | 4 (12.5%)   | 1 (6.7%)    |
| nkin • Tanaya Bhowmick •<br>Furst • Eun Jeong Kwak •  | Infections abdominales           | 2 (6.3%)    | 2 (13.3%)   |
| rid Griffith • Olga Lomovskaya •                      | Microbiologie                    |             |             |
| (2014, 2017) (2.1)                                    | Kl. pn                           | 29 (90.6%)  | 12 (80.0%)  |
| ouvert (2014-2017) (2:1)<br>e Vaborbactam vs meilleur | E. coli                          | 3 (9.4%)    | 1 (6.7%)    |
| C                                                     | E. cloacae                       | 1 (3.1%)    | 2 (13.3%)   |
|                                                       | Proteus mirabilis                | 0           | 2 (13.3%)   |
| ion MITT                                              | Serratia mascescens              | 1 (3.1%)    | 1 (6.7%)    |
|                                                       | Terrain/gravité                  |             |             |
|                                                       | Charlson ≥ 6                     | 14 (43.8%)  | 11 (73.3%)  |
|                                                       | SIRS                             | 15 (46.9%)  | 6 (40.0%)   |
|                                                       | Réanimation                      | 5 (15.6%)   | 3 (20.0%)   |
| Wunderink RG et al. Infect Dis Thei                   | Immunodéprimés<br>2018;7:439–455 | 11 (34.4%)  | 8 (53.3%)   |

| Critères (Population mERC-MITT)                                    | VABOREM, N<br>(%)(N=32) | MAD, N (%)<br>(N=15) | Différence*<br>(95 % IC) | р         | Différence<br>relative <sup>†</sup> |  |  |  |
|--------------------------------------------------------------------|-------------------------|----------------------|--------------------------|-----------|-------------------------------------|--|--|--|
| Critères d'efficacité                                              |                         |                      |                          |           |                                     |  |  |  |
| Guérison clinique à la fin du ttt IV                               | 21 (65,6)               | 5 (33,3)             | 32,3 (3,3 to 61,3)       | 0,03      | 97,0                                |  |  |  |
| Guérison clinique à J7 $\pm$ 2 après le traitement IV              | 19 (59,4)               | 4 (26,7)             | 32,7 (4,6 to 60,8)       | 0,02      | 122,5                               |  |  |  |
| Guérison microbiologique <sup>‡</sup> à la fin du ttt IV           | 21 (65,6)               | 6 (40,0)             | 25,6 (-4,1 to 55,4)      | 0,09      | 64,0                                |  |  |  |
| Guérison microbiologique <sup>‡</sup> à J7 $\pm$ 2 après le ttt IV | 17 (53,1)               | 5 (33,3)             | 19,8 (-9,7 to 49,3)      | 0,19      | 59,5                                |  |  |  |
| Mortalité à J28                                                    | 5 (15,6)                | 5 (33,3)             | -17,7 (-44,7 to 9,3)     | 0,20      | -53,2                               |  |  |  |
| Analyse exploratoire du profil bénéfices                           | -risques de VABORE      | M Vs la meilleu      | re antibiothérapie dispo | onible (M | AD)                                 |  |  |  |
| Mortalité toutes causes à J28 et néphrotoxicité <sup>§</sup>       | 8 (25,0)                | 6 (40,0)             | -15,0 (-44,0 to 14,0)    | 0,31      | -37,5                               |  |  |  |
| Echec clinique et néphrotoxicité <sup>¶</sup>                      | 10 (31,3)               | 12 (80,0)            | -48,7 (-74,6 to -22,9)   | <0,001    | -60,9                               |  |  |  |
| Mortalité toutes causes à J28 et Els**                             | 6 (18,8)                | 9 (60,0)             | -41,2 (-69,5 to -13,0)   | 0,004     | -68,7                               |  |  |  |
| Echec clinique ou Els renal <sup>††</sup>                          | 9 (28,1)                | 12 (80,0)            | –51,9 (–77,4 to –26,3)   | <0,001    | -64,9                               |  |  |  |

Wunderink RG et al. Infect Dis Ther 2018;7:439–455 27



Check for updates

Meropenem-Vaborbactam versus Ceftazidime-Avibactam for Treatment of Carbapenem-Resistant *Enterobacteriaceae* Infections

Renee Ackley,<sup>a</sup> Danya Roshdy,<sup>a</sup> Jacqueline Meredith,<sup>a</sup> Sarah Minor,<sup>b</sup> William E. Anderson,<sup>c</sup> Gerald A. Capraro,<sup>d</sup> Christopher Polk<sup>e</sup>

- Etude rétrospective multicentrique (février 2015-octobre 2018)
- Infections à EPC recevant Ceftazidime Avibactam ou Méropénème Vaborbactam ≥ 72 h
- Exclusion des patients avec IU localisée et exposition antibiotique répétée ultérieure
- Succès clinique

Mortalité J30 et J90, récidive émergence de résistance, EIG

|                        |                    | C-A (n=105)      | MEV (n=26)       | P value |
|------------------------|--------------------|------------------|------------------|---------|
| Sexe masculin          |                    | 58 (55,2)        | 12 (46,2)        | NS      |
| Âge médian (IQR)       |                    | 62,0 (51-79)     | 57,5 (50,0-70,0) | NS      |
| Immunodéprimés         |                    | 12 (11,4)        | 4 (15,4)         | NS      |
| APACHE II              |                    | 26,0 (22,0-30,0) | 27 (24-34)       | NS      |
| Bactériémie primitive  |                    | 7 (6,7)          | 1 (3,8)          | NS      |
| Infection urinaire     |                    | 13 (35,2)        | 1 (12,5)         | NS      |
| Infection abdominale   |                    | 6 (16,2)         | 3 (37,5)         | NS      |
| Infection respiratoire |                    | 7 (18,9)         | 2 (25,0)         | NS      |
| EPC responsable        |                    |                  |                  | NS      |
|                        | <i>KI. pn</i> spp. | 76 (72,4)        | 15 (57,7)        | NS      |
|                        | E. coli            | 9 (8,6)          | 3 (11,5)         | NS      |
| Ent                    | erobacter spp      | 20 (19,1)        | 8 (30,8)         | NS      |
| С                      | itrobacter spp     | 2 (1,9)          | 2 (7,7)          | NS      |
| Guérison clinique      |                    | 26 (63,4)        | 39 (60,9)        | NS      |
| Mortalité J90          |                    | 9 (22)           | 20 (31,2)        | NS      |
|                        |                    | AAC 2            | 2020             | 28      |

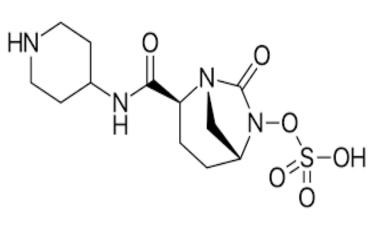


Renee Ackley,<sup>a</sup> Danya Roshdy,<sup>a</sup> Jacqueline Meredith,<sup>a</sup> Sarah Minor,<sup>b</sup> William E. Anderson,<sup>c</sup> Gerald A. Capraro,<sup>d</sup> Christopher Polk<sup>e</sup>

### Augmentation de la CMI en monothérapie CZA et émergence de résistances

| CMI initiale<br>(mg/I) | CMI récidive<br>(mg/l) | Emergence de résistance | Durée de<br>traitement C-A<br>(jours) | Point de départ | Dialyse |
|------------------------|------------------------|-------------------------|---------------------------------------|-----------------|---------|
| 0,25                   | 0,75                   | Non                     | 10,6                                  | abdominal       | Non     |
| 0,75                   | 1,5                    | Non                     | 7,6                                   | respiratoire    | Non     |
| 0,75                   | 12                     | Oui                     | 10,3                                  | respiratoire    | Oui     |
| 4                      | 12                     | Oui                     | 13,2                                  | respiratoire    | Oui     |
| 2                      | 32                     | Oui                     | 4,4                                   | respiratoire    | Oui     |




COMMISSION DE LA TRANSPARENCE Avis

- VABOREM (méropénème/vaborbactam) est un traitement de dernier recours réservé aux patients atteints d'infections vaborbactam vaborbactam vaborbactam lesquels le recours aux composition à diluer pour perfusion
  Première évaluation
  Première évaluation
  Intéropénème/vaborbactam et pour jisageable en cas de résistance, notamment avec un mécanisme de résistance de type KPC.
- la Commission considère que VABOREM apporte une amélioration du service médical rendu modérée (ASMR III) dans la prise en charge des infections à entérobactéries sensibles à l'association méropénème/vaborbactam et pour lesquels le recours aux autres bétalactamines et aux carbapénèmes (méropénème ou imipénème-cilastatine) n'est pas envisageable en cas de résistance.

# Imipénème Relebactam

## Relebactam

- Nouvel inhibiteur de β-lactamase: diazabicyclooctane
- Liaison reversible : peuvent se fixer sur d'autres sites
  - Actif vis à vis de KPC (classe A) et BLSE
- Inactif vis à vis des MBLs (classe B)
- Moins actif vis à vis des OXA-48 (classe D)
- Si Pyo IMI R >> possibilité de restaurer S





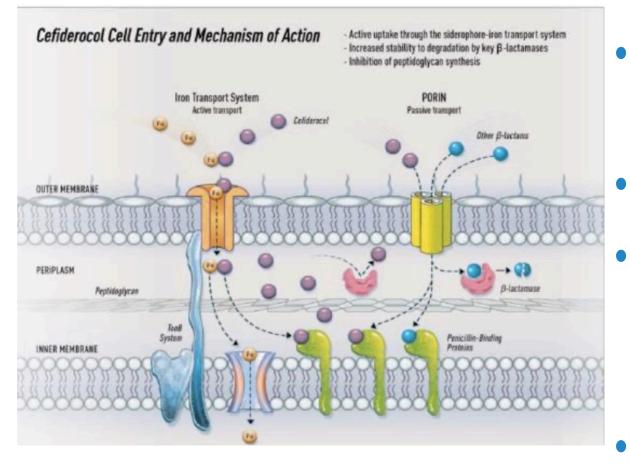
RESTORE-IMI 1: A Multicenter, Randomized, Doubleblind Trial Comparing Efficacy and Safety of Imipenem/ Relebactam vs Colistin Plus Imipenem in Patients With Imipenem-nonsusceptible Bacterial Infections

Johann Motsch,<sup>1</sup> Cláudia Murta De Oliveira,<sup>2</sup> Viktor Stus,<sup>3</sup> Htihar Köksal,<sup>4</sup> Olexiy Lyulko,<sup>5</sup> Helen W. Boucher,<sup>6</sup> Keith S. Kaye,<sup>7</sup> Thomas M. File Jr,<sup>8</sup> Michelle L Brown,<sup>9</sup> Ireen Khan,<sup>9</sup> Jiejun Du,<sup>9</sup> Hee-Koung Joeng,<sup>9</sup> Robert W. Tipping,<sup>9</sup> Angela Aggrey,<sup>9</sup> Katherine Young,<sup>9</sup> Nicholas A. Kartsonis,<sup>9</sup> Joan R. Butterton,<sup>9</sup> and Amanda Paschke<sup>9</sup>

- RCT (2:1) double aveugle
- PAVM, IIA, IU
- Bactérie résistante à IMI
- Sensible IMI/relebactam et Colistine
- 5–21 j imipénème/relebactam vs colistine+imipénème

|                        | IMI/REL (n=21) | Coli+IMI (n=10) |
|------------------------|----------------|-----------------|
| Sexe masculin          | 13 (61,9%)     | 7 (70%)         |
| Âge (médiane range)    | 59 (19-75)     | 61 (49-80)      |
| APACHE > 15            | 7 (33,3)       | 2 (20)          |
| PAVM                   | 8 (38,1)       | 3 (30)          |
| IU                     | 11 (52,4)      | 5 (50)          |
| IA                     | 2(9,5)         | 2 (20)          |
| Bactériémie            | 16 (76,2)      | 10 (100)        |
| Bactéries responsables |                |                 |
| Citrobacter freundi    | 1 (4,8)        | 0               |
| Enterobacter cloacae   | 1 (4,8)        | 0               |
| Klebsiella oxytoca     | 0              | 1 (10%)         |
| Klebsiella pneumoniae  | 3 (14,5%)      | 1 (10%)         |
| Pseudomonas aeruginosa | 16 (76,2%)     | 8 (80%)         |
| KPC                    | 4 (19,0)       | 1 (10%) 39      |




RESTORE-IMI 1: A Multicenter, Randomized, Doubleblind Trial Comparing Efficacy and Safety of Imipenem/ Relebactam vs Colistin Plus Imipenem in Patients With Imipenem-nonsusceptible Bacterial Infections

Johann Motsch,<sup>1</sup> Cláudia Murta De Oliveira,<sup>2</sup> Viktor Stus,<sup>3</sup> Htihar Köksal,<sup>4</sup> Olexiy Lyulko,<sup>5</sup> Helen W. Boucher,<sup>6</sup> Keith S. Kaye,<sup>7</sup> Thomas M. File Jr,<sup>8</sup> Michelle L Brown,<sup>9</sup> Ireen Khan,<sup>9</sup> Jiejun Du,<sup>9</sup> Hee-Koung Joeng,<sup>9</sup> Robert W. Tipping,<sup>9</sup> Angela Aggrey,<sup>9</sup> Katherine Young,<sup>9</sup> Nicholas A. Kartsonis,<sup>9</sup> Joan R. Butterton,<sup>9</sup> and Amanda Paschke<sup>9</sup>

|                           | IMI/REL | Coli+IMI | Différence (ajustée)<br>IC90% |
|---------------------------|---------|----------|-------------------------------|
| Réponse favorable globale | 71,4%   | 70,0%    | -74 (-275;21,4)               |
| PVM                       | 87,5%   | 66,7%    | 20,8                          |
| IIA                       | 0       | 0        |                               |
| IUc                       | 72,7%   | 100%     |                               |
| Réponse clinique à J28    | 71,4%   | 40,0%    | 26,3 (1,3; 51,5)              |
| Mortalité toute cause J28 | 9,5%    | 30,0%    |                               |
| Néphrotoxicité            | 10,3%   | 56,3%    |                               |

# Cefiderocol

## Cefiderocol



- Une céphalosporine type sidérophore
- « Cheval de Troie »
- Se lie au fer ferrique transporté dans les cellules bactériennes,
- Active contre toutes les EPC

Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial

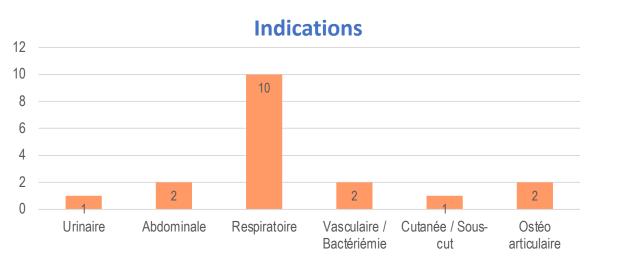
Matteo Bassetti, Roger Echols, Yuko Matsunaga, Mari Ariyasu, Yohei Doi, Ricard Ferrer, Thomas P Lodise, Thierry Naas, Yoshihito Niki, David L Paterson, Simon Portsmouth, Julian Torre-Cisneros, Kiichiro Toyoizumi, Richard G Wunderink, Tsutae D Nagata

|                     | Cefiderocol<br>(n=101)         | Best available<br>therapy (n=49) |
|---------------------|--------------------------------|----------------------------------|
| Sex                 |                                |                                  |
| Male                | 66 (65%)                       | 35 (71%)                         |
| Female              | 35 (35%)                       | 14 (29%)                         |
| Age (years)         |                                |                                  |
| Mean (SD)           | 63.1 (19.0)                    | 63.0 (16.7)                      |
| Median (range; IQR) | 69 (19–92; 52–77)              | 62 (19–92; 51–76)                |
| <65                 | 37 (37%)                       | 27 (55%)                         |
| ≥65                 | 64 (63%)                       | 22 (45%)                         |
| <75                 | 72 (71%)                       | 35 (71%)                         |
| ≥75                 | 29 (29%)                       | 14 (29%)                         |
| BMI (kg/m²)*        | 25·0 (12·0–52·4;<br>21·3–27·8) | 23·5 (14·3–48·9;<br>20·3–29·2)   |

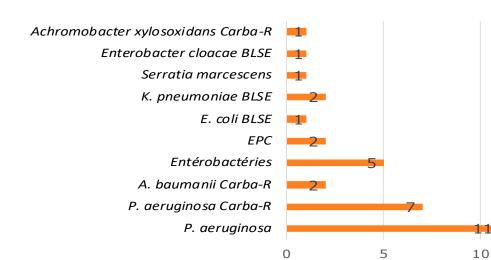
|                                                     | Cefiderocol<br>(n=80) | Best available<br>therapy (n=38) |  |  |  |  |
|-----------------------------------------------------|-----------------------|----------------------------------|--|--|--|--|
| Number of carbapenem-resist appropriate specimens*  | ant Gram-negative p   | athogens from                    |  |  |  |  |
| One                                                 | 62 (78%)              | 30 (79%)                         |  |  |  |  |
| Two                                                 | 13 (16%)              | 8 (21%)                          |  |  |  |  |
| Three                                               | 4 (5%)                | 0                                |  |  |  |  |
| Four                                                | 1 (1%)                | 0                                |  |  |  |  |
| Type of carbapenem-resistant Gram-negative pathogen |                       |                                  |  |  |  |  |
| All patients                                        | N=87†                 | N=40‡                            |  |  |  |  |
| Acinetobacter baumannii                             | 37 (46%)              | 17 (45%)                         |  |  |  |  |
| Klebsiella pneumoniae                               | 27 (34%)              | 12 (32%)                         |  |  |  |  |
| Pseudomonas aeruginosa                              | 12 (15%)              | 10 (26%)                         |  |  |  |  |
| Stenotrophomonas<br>maltophilia                     | 5 (6%)                | 0                                |  |  |  |  |
| Acinetobacter nosocomialis                          | 2 (3%)                | 0                                |  |  |  |  |
| Enterobacter cloacae                                | 2 (3%)                | 0                                |  |  |  |  |
| Escherichia coli                                    | 2 (3%)                | 1 (3%)                           |  |  |  |  |

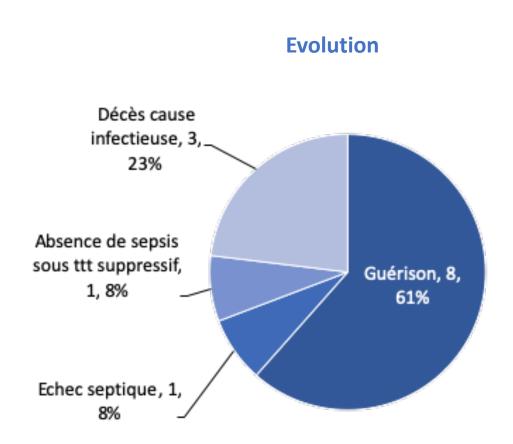
Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial

Matteo Bassetti, Roger Echols, Yuko Matsunaga, Mari Ariyasu, Yohei Doi, Ricard Ferrer, Thomas P Lodise, Thierry Naas, Yoshihito Niki, David L Paterson, Simon Portsmouth, Julian Torre-Cisneros, Kiichiro Toyoizumi, Richard G Wunderink, Tsutae D Nagata


|                         | Nosocomial pneumonia   |                                  | Bloodstream<br>sepsis  | infections or                    | Complicated infections | urinary tract                   | Overall                |                                 |
|-------------------------|------------------------|----------------------------------|------------------------|----------------------------------|------------------------|---------------------------------|------------------------|---------------------------------|
|                         | Cefiderocol<br>(n=40)  | Best available<br>therapy (n=19) | Cefiderocol<br>(n=23)  | Best available<br>therapy (n=14) | Cefiderocol<br>(n=17)  | Best available<br>therapy (n=5) | Cefiderocol<br>(n=80)  | Best available<br>therapy (n=38 |
| Clinical outcome        | S                      |                                  |                        |                                  |                        |                                 |                        |                                 |
| End of treatment        |                        |                                  |                        |                                  |                        | [                               |                        |                                 |
| Clinical cure           | 24 (60%;<br>43·3–75·1) | 12 (63%;<br>38·4–83·7)           | 16 (70%;<br>47·1–86·8) | 7 (50%;<br>23·0–77·0)            | 13 (77%;<br>50·1–93·2) | 3 (60%;<br>14·7–94·7)           | 53 (66%;<br>54·8–76·4) | 22 (58%;<br>40·8–73·7)          |
| Clinical failure        | 13 (33%)               | 7 (37%)                          | 6 (26%)                | 7 (50%)                          | 1(6%)                  | 1 (20%)                         | 20 (25%)               | 15 (40%)                        |
| Indeterminate           | 3 (8%)                 | 0                                | 1(4%)                  | 0                                | 3 (18%)                | 1 (20%)                         | 7 (9%)                 | 1 (3%)                          |
| Test of cure            |                        |                                  |                        |                                  |                        |                                 |                        |                                 |
| Clinical cure*          | 20 (50%;<br>33·8–66·2) | 10 (53%;<br>28·9–75·6)           | 10 (43%;<br>23·2–65·5) | 6 (43%;<br>17·7–71·1)            | 12 (71%;<br>44·0-89·7) | 3 (60%;<br>14·7–94·7)           | 42 (53%;<br>41·0–63·8) | 19 (50%;<br>33·4–66·6)          |
| Clinical failure        | 16 (40%)               | 6 (32%)                          | 9 (39%)                | 7 (50%)                          | 2 (12%)                | 1 (20%)                         | 27 (34%)               | 14 (37%)                        |
| Indeterminate           | 4 (10%)                | 3 (16%)                          | 4 (17%)                | 1(7%)                            | 3 (18%)                | 1 (20%)                         | 11 (14%)               | 5 (13%)                         |
| Follow-up               |                        |                                  |                        |                                  |                        |                                 |                        |                                 |
| Sustained clinical cure | 20 (50%;<br>33·8–66·2) | 6 (32%;<br>12·6–56·6)            | 9 (39%;<br>19·7–61·5)  | 4 (29%;<br>8·4–58·1)             | 9 (53%;<br>27·8–77·0)  | 3 (60%;<br>14·7–94·7)           | 38 (48%;<br>36·2–59·0) | 13 (34%;<br>19·6–51·4)          |
| Relapse                 | 0                      | 3 (16%)                          | 1(4%)                  | 1(7%)                            | 1(6%)                  | 0                               | 2 (3%)                 | 4 (11%)                         |
| Clinical failure        | 16 (40%)               | 6 (32%)                          | 9 (39%)                | 7 (50%)                          | 2 (12%)                | 1 (20%)                         | 27 (34%)               | 14 (37%)                        |
| Indeterminate           | 4 (10%)                | 4 (21%)                          | 4 (17%)                | 2 (14%)                          | 5 (29%)                | 1 (20%)                         | 13† (16%)              | 7† (18%)                        |

Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial


Matteo Bassetti, Roger Echols, Yuko Matsunaga, Mari Ariyasu, Yohei Doi, Ricard Ferrer, Thomas P Lodise, Thierry Naas, Yoshihito Niki, David L Paterson, Simon Portsmouth, Julian Torre-Cisneros, Kiichiro Toyoizumi, Richard G Wunderink, Tsutae D Nagata

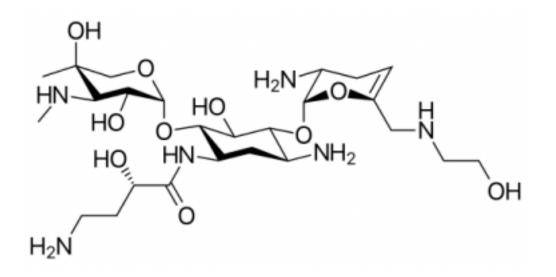

|              | Nosocomial pneumonia |                | Bloodstream infections or sepsis |                | Complicated urinary tract infections |                | Overall     |                |
|--------------|----------------------|----------------|----------------------------------|----------------|--------------------------------------|----------------|-------------|----------------|
|              | Cefiderocol          | Best available | Cefiderocol                      | Best available | Cefiderocol                          | Best available | Cefiderocol | Best available |
|              | (n=45)               | therapy (n=22) | (n=30)                           | therapy (n=17) | (n=26)                               | therapy (n=10) | (n=101)     | therapy (n=49) |
| Day 14       | 11 (24%;             | 3 (14%;        | 5 (17%;                          | 1 (6%;         | 3 (12%;                              | 2 (20%;        | 19 (19%;    | 6 (12%;        |
|              | 12·9—39·5)           | 2·9–34·9)      | 5·6–34·7)                        | 0·1–28·7)      | 2·4–30·2)                            | 2·5–55·6)      | 11·7–27·8)  | 4·6–24·8)      |
| Day 28       | 14 (31%;             | 4 (18%;        | 7 (23%;                          | 3 (18%;        | 4 (15%;                              | 2 (20%;        | 25 (25%;    | 9 (18%;        |
|              | 18·2–46·6)           | 5·2-40·3)      | 9·9–42·3)                        | 3·8-43·4)      | 4·4–34·9)                            | 2·5–55·6)      | 16·7–34·3)  | 8·8–32·0)      |
| End of study | 19 (42%;             | 4 (18%;        | 11 (37%;                         | 3 (18%;        | 4 (15%;                              | 2 (20%;        | 34 (34%;    | 9 (18%;        |
|              | 27·7–57·8)           | 5·2–40·3)      | 19·9–56·1)                       | 3·8-43·4)      | 4·4–34·9)                            | 2·5–55·6)      | 24·6–43·8)  | 8·8–32·0)      |

# **Cefiderocol-expérience française**



### **Bactéries responsables**





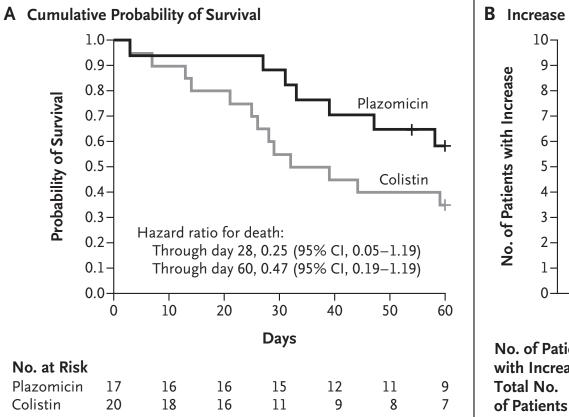

Poster BMR-11 JNI 2020 53

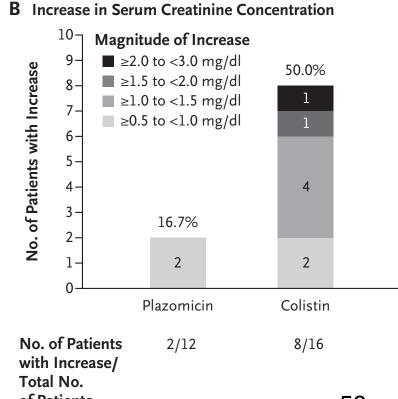
| Patient                                          | 1                        |                           | 3                        |                          | 5                        |                                                    |                          |                          | 8                        | 9                        | 10                       | 11                       | 12                        |
|--------------------------------------------------|--------------------------|---------------------------|--------------------------|--------------------------|--------------------------|----------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|
| Strain CNR reference                             | O81 A4<br>(Cephyten 266) | O80 J10<br>(Cephyten 267) | O81 A1<br>(Cephyten 268) | O80 H7<br>(Cephyten 240) | O80 H8<br>(Cephyten 238) | CNR 212 H7                                         | O80 I4<br>(Cephyten 255) | O80 I5<br>(Cephyten 256) | O75 H8<br>(Cephyten 265) | O81 A2<br>(Cephyten 269) | O80 I3<br>(Cephyten 254) | O80 H9<br>(Cephyten 237) | O80 H10<br>(Cephyten 239) |
| Type of infection                                | RTI                      | Vascular                  | RTI + IAA +<br>Vascular  | RTI                      | RTI                      | Prosthetic joint infection                         | R                        | RTI                      | RTI + IAA                | RTI                      | RTI + UTI                | BJI + SSTI               | RTI                       |
| Immunosuppression                                | Yes                      | No                        | No                       | Yes                      | Yes                      | No                                                 | Y                        | es                       | No                       | Yes                      | Yes                      | No                       | Yes                       |
| Septic shock<br>(SOFA score)                     | No<br>(1)                | No<br>(9)                 | No<br>(5)                | No<br>(8)                | No<br>(5)                | No<br>(0)                                          |                          | es<br>9)                 | Yes<br>(14)              | No<br>(0)                | Yes<br>(8)               | No<br>(4)                | No<br>(12)                |
| XDR isolate that led to<br>cefiderocol treatment | P. aeruginosa            | A. baumannii              | A. baumannii             | P. aeruginosa            | P. aeruginosa            | Enterobacter<br>hormaechei<br>subsp.<br>hoffmannii | K. pneumoniae            | P. aeruginosa             |
| Carbapenemase                                    | VIM-4                    | OXA-23                    | OXA-23                   | -                        | VIM-2                    | -                                                  | OXA-48                   | NDM-1                    | VIM-2                    | OXA-836                  | -                        | VIM-2                    | -                         |
| Antimicrobial susceptibility<br>(MIC)            |                          |                           |                          |                          |                          |                                                    |                          |                          |                          |                          |                          |                          |                           |
| Imipenem                                         | R (>32)                  | R (32)                    | R (32)                   | 2                        | R (>32)                  | R (8)                                              | l (2)                    | R (>32)                  | R (>32)                  | R (32)                   | 2                        | R (>32)                  | R (32)                    |
| Meropenem                                        | R (>32)                  | R (>32)                   | R (>32)                  | R (16)                   | R (>32)                  | R (16)                                             | R (2)                    | R (>32)                  | R (>32)                  | R (16)                   | R (16)                   | R (>32)                  | R (>32)                   |
| Ceftolozane-tazobactam                           | R (>32)                  | R (>32)                   | R (>32)                  | R (>32)                  | R (>32)                  | R (>32)                                            | R (16)                   | R (>32)                   |
| Ceftazidime-avibactam                            | R (>32)                  | R (>32)                   | R (>32)                  | R (>32)                  | R (>32)                  | S (8)                                              | S (≤0.25)                | R (>32)                   |
| Imipenem-relebactam                              | R (>32)                  | R (32)                    | R (32)                   | 2                        | R (>32)                  | S (1)                                              | S (1)                    | R (>32)                  | R (>32)                  | R (32)                   | 2                        | R (>32)                  | R (16)                    |
| Meropenem-vaborbactam                            | R (>32)                  | R (>32)                   | R (>32)                  | R (16)                   | R (>32)                  | l (8)                                              | S (2)                    | R (>32)                  | R (>32)                  | R (16)                   | R (16)                   | R (>32)                  | R (>32)                   |
| Cefepime-zidebactam                              | 8                        | 32                        | 32                       | ≤ 4                      | 4                        | 8                                                  | ≤ 4                      | 8                        | ≤ 4                      | 8                        | 8                        | 8                        | 32                        |
| Cefiderocol                                      | S (2)                    | S (1)                     | S (0.5)                  | S (4)                    | S (2)                    | S (1)                                              | S (0.5)                  | S (4)                    | l (8)                    | R (16)                   | R (16)                   | R (>32)                  | R (16)                    |
| Amikacin                                         | R (64)                   | S (16)                    | R (>256)                 | R (>256)                 | R (>256)                 | S (16)                                             | S (4)                    | R (>256)                 | S (16)                    |
| Gentamicin                                       | R (>256)                 | R (>256)                  | R (>256)                 | R (>256)                 | R (>256)                 | R (>256)                                           | S (0.5)                  | R (>256)                 | R (16)                   | I (8)                    | R (>256)                 | R (>256)                 | S (3)                     |
| Tobramycin                                       | R (>256)                 | S (3)                     | R (>256)                 | R (>256)                 | R (>256)                 | R (48)                                             | S (6)                    | R (>256)                 | R (32)                   | R (>256)                 | R (>256)                 | R (>256)                 | S (1)                     |
| Colisitin                                        | S (2)                    | S (2)                     | S (1)                    | R (4)                    | S (2)                    | S (0.5)                                            | S (1)                    | S (2)                    | S (2)                    | R (64)                   | S (2)                    | S (2)                    | S (2)                     |
| Tygecyclin                                       | R (16)                   | 2                         | 4                        | R (8)                    | R (16)                   | S (1)                                              | 2                        | R (8)                    | R (16)                    |
| Eravacyclin                                      | R (8)                    | 0.5                       | 1                        | R (4)                    | R (8)                    | S (2)                                              | 0.5                      | R (4)                    | R (8)                     |
| Outcome                                          | Cure                     | Cure                      | Cure                     | Cure                     | Cure                     | Cure                                               | Fai                      | ilure                    | Death (infection)        | Death (infection)        | Failure                  | Failure                  | 54 pressive treatment     |

# Plazomicine

## Plazomicine




- Plazomicine = dérivé de la sisomicine
- Addition d'un groupe acide hydroxyaminobutyrique en position 1 + 1 groupe hydroxyéthyle en position 6'
- Actif sur la plupart des EPC (échappe aux enzymes de résistance exceptée AAC (2'))
- Inactif en cas de méthyltransférases (fréquent chez NDM)
- Activité anti Pseudomonas aeruginosa et A. baumannii comparable aux autres AG

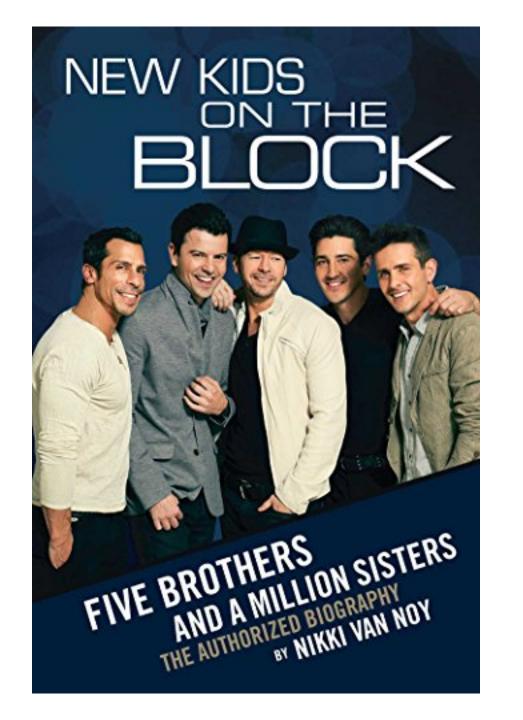

#### CORRESPONDENCE

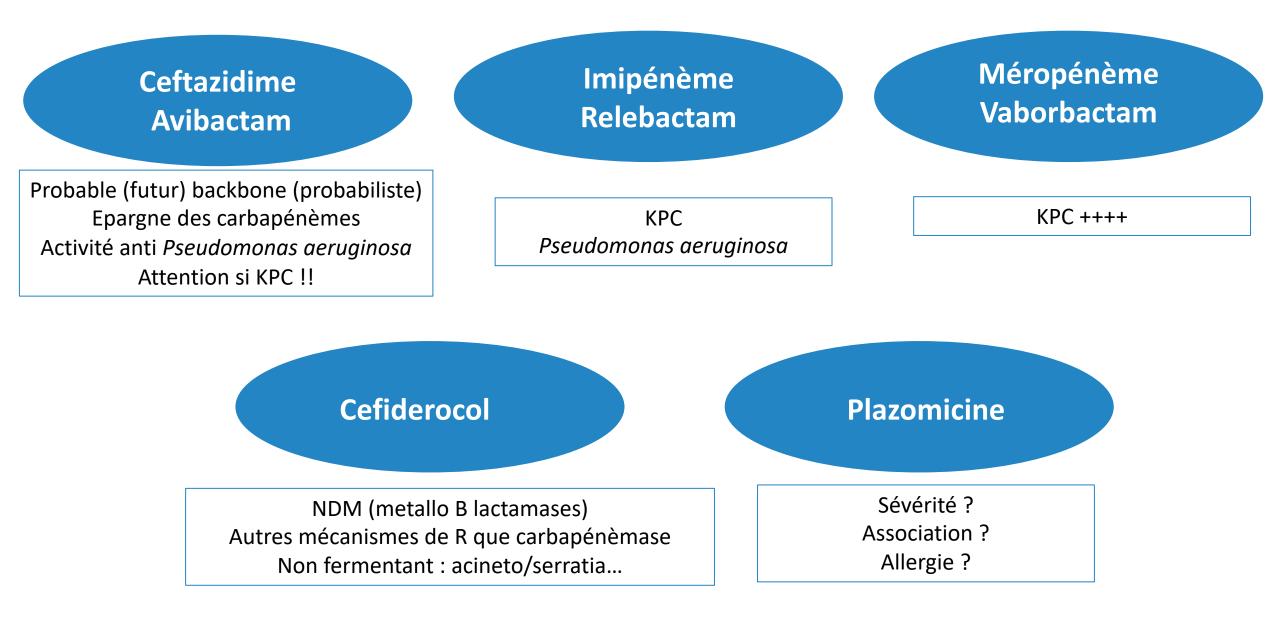
- RCT (1:1) ouvert (septembre 2014-2016)
- Bactériémies et HVAP
- Plazomicine (15 mg/kg) vs colistine (5 mg colistine base/kg),
- En association avec méropénème ou tigécycline (durée totale 7 à 14j)
- Critère principal composite : décès toute cause
   J28+complication septique
- Arrêt prématuré recrutement insuffisant
- 39 patients randomisés (37 avec EPC confirmées)
- 28 bactériémies et et 8 HVAP



#### Plazomicin for Infections Caused by Carbapenem-Resistant Enterobacteriaceae







Aztreonam plus Clavulanate, Tazobactam, or Avibactam for Treatment of Infections Caused by Metallo- $\beta$ -Lactamase-Producing Gram-Negative Bacteria

Cécile Emeraud,<sup>a,b,c,d</sup> Lelia Escaut,<sup>e</sup> Athénaïs Boucly,<sup>d,f,g</sup> Nicolas Fortineau,<sup>a,b,c</sup> Rémy A. Bonnin,<sup>b,c,d</sup> <sup>(b)</sup>Thierry Naas,<sup>a,b,c,d</sup> <sup>(b)</sup>Laurent Dortet<sup>a,b,c,d</sup>

• Activité Aztreonam + C/A ou AAC ou CT

|                               | Aztreonam + C/A | Aztreonam + AAC | Aztreonam + CT |
|-------------------------------|-----------------|-----------------|----------------|
| Entérobactéries MBL           | 86%             | 50%             | 20%            |
| Pyo MBL                       | +++             |                 |                |
| Sthenotrophomonas maltophilia | 100%            |                 |                |





#### Infectious Diseases Society of America Antimicrobial Resistant Treatment Guidance: Gram-Negative

#### **Bacterial Infections**

#### A Focus on Extended-Spectrum $\beta$ -lactamase Producing Enterobacterales (ESBL-E), Carbapenem-

#### Resistant Enterobacterales (CRE), and *Pseudomonas aeruginosa* with Difficult-to-Treat Resistance (DTR-Infections outside of the urinary Meropenem<sup>1</sup> (extended-infusion) Ceftazidime-avibactam *P. aeruginosa*)

#### Authors:

Pranita D. Tamma,<sup>1</sup> Samuel L. Aitken,<sup>2</sup> Robert A. Bonomo,<sup>3</sup> Amy J. Mathers,<sup>4</sup> David van Duin,<sup>5</sup> Cornelius J. Clancy<sup>6</sup>

| Infections outside of the urinary tract                                                                            | Ceftazidime-avibactam, meropenem-<br>vaborbactam, and imipenem-cilastatin-<br>relebactam | Cefiderocol                                                                                    |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Resistant to ertapenem,<br>meropenem, AND carbapenemase<br>testing results are either not<br>available or negative |                                                                                          | Tigecycline, eravacycline<br>(uncomplicated intra-abdominal<br>infections only)                |
| KPC identified<br>(Or carbapenemase positive but<br>identify of carbapenemase<br>unknown <sup>3</sup> )            | Ceftazidime-avibactam, meropenem-<br>vaborbactam, imipenem-cilastatin-<br>relebactam     | Cefiderocol<br>Tigecycline, eravacycline<br>(uncomplicated intra-abdominal<br>infections only) |

#### Infectious Diseases Society of America Antimicrobial Resistant Treatment Guidance: Gram-Negative Bacterial Infections

A Focus on Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and *Pseudomonas aeruginosa* with Difficult-to-Treat Resistance (DTR-*P. aeruginosa*)

#### Authors:

Pranita D. Tamma,<sup>1</sup> Samuel L. Aitken,<sup>2</sup> Robert A. Bonomo,<sup>3</sup> Amy J. Mathers,<sup>4</sup> David van Duin,<sup>5</sup> Cornelius J. Clancy<sup>6</sup>

| Metallo-β-lactamase (i.e., NDM,<br>VIM, or IMP) carbapenemase<br>identified | Ceftazidime-avibactam + aztreonam,<br>cefiderocol | Tigecycline, eravacycline<br>(uncomplicated intra-abdominal<br>infections only)                |
|-----------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------|
| OXA-48-like carbapenemase<br>identified                                     | Ceftazidime-avibactam                             | Cefiderocol<br>Tigecycline, eravacycline<br>(uncomplicated intra-abdominal<br>infections only) |